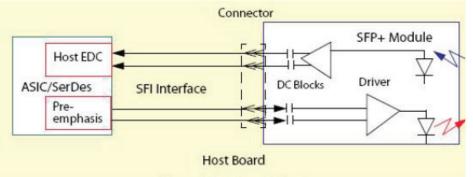
AL-SFP10GSM-10

SINGLE MODE SFP+ 10 GIGA

ALCON SEP 1250 SIN:



Single mode SFP+ 10 Gigabit 10km Transceiver

OVERVIEW

This 1310 nm DFB 10Gigabit SFP+ transceiver is designed to transmit and receive optical data over single mode optical fiber for link length 10km. The SFP+ LR module electrical interface is compliant to SFI electrical specifications. The transmitter input and receiver output impedance is 100 Ohms differential. Data lines are internally AC coupled. The module provides differential termination and reduce differential to common mode conversion for quality signal termination and low EMI. SFI typically operates over 200 mm of improved FR4 material or up to about 150mmof standard FR4 with one connector.

The 3rd functional capability of the SFP+ module is the 2 wire serial, I2C, interface. I2C is used forserial ID, digital diagnostics, and module control functions. The enhanced digital diagnostics monitoring interface allows real time access to the device allowing monitor of received optical power, laser bias current, laser optical output power, etc.

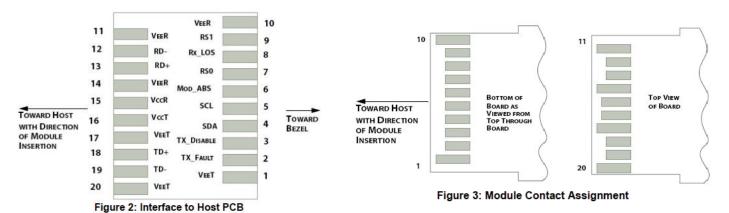
Figure 1: Interface to Host

APPLICATIONS

- 10GBASE-LR at 10.3125Gbps
- 10GBASE-LW at 9.953Gbps
- Other optical links

VETWORK POWER EFFICIENCY

OPTIMIZE YOUR NETWORK POWER EFFICIENCY


AL-SFP10GSM-10

FEATURES

- Optical interface compliant to IEEE 802.3ae 10GBASE-LR
- Electrical interface compliant to SFF-8431
- Hot Pluggable
- 1310nm DFB transmitter, PIN photo-detector
- Operating case temperature range of 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial)
- Low power consumption
- Applicable for 10km SMF connection
- All-metal housing for superior EMI performance
- Advanced firmware allow customer system encryption information to be stored in transceiver
- Cost effective SFP+ solution, enables higher port densities and greater bandwidth

PIN DEFINITION

The SFP+ modules are hot-pluggable. Hot pluggable refers to plugging in or unplugging a module while the host board is powered. The SFP+ host connector is a 0.8 mm pitch 20 position right angle improved connector specified by SFF-8083, or stacked connector with equivalent with equivalent electrical performance. Host PCB contact assignment is shown in Figure 2 and contact definitions are given in Table 2. SFP+ module contacts mates with the host in the order of ground, power, followed by signal as illustrated by Figure 3 and the contact sequence order listed in Table 2.

PIN	Logic	Symbol	Name / Description	Note		
1		VeeT	Module Transmitter Ground	1		
2	LVTTL-O	TX Fault	Module Transmitter Fault			
3	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output			
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	2		
5	LVTTL-I	SCL	2-Wire Serial Interface Clock	2		
6		MOD_DEF0	Module Definition, Grounded in the module			
7	LVTTL-I	RS0	Receiver Rate Select			
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication Active LOW			
9	LVTTL-I	RS1	Transmitter Rate Select (not used)			
10		VeeR	Module Receiver Ground	1		
11		VeeR	Module Receiver Ground	1		
12	CML-O	RD-	Receiver Inverted Data Output			
13	CML-O	RD+	Receiver Data Output (not used)			
14		VeeR	Module Receiver Ground			
15		VccR	Module Receiver 3.3 V Supply			
16		VccT	Module Receiver 3.3 V Supply			
17		VeeT	Module Transmitter Ground			
18	CML-I	TD+	Transmitter Non-Inverted Data Input			
19	CML-I	TD-	Transmitter Inverted Data Input			
20		VeeT	Module Transmitter Ground			

Table 2: SFP+ Module PIN Definition

ABSOLUTE MAXIMUM RATING

These values represent the damage threshold of the module. Stress in excess of any of the individual Absolute Maximum Ratings can cause immediate catastrophic damage to the module even if all other parameters are within Recommended Operating Conditions.

Parameters	Symbol	Min.	Max.	Unit
Power Supply Voltage	Vcc	0	+3.6	V
Storage Temperature	Тс	-40	+85	°C
Operating Coop Temperature	Commercial	Та	0	
Operating Case Temperature	Industrial	Тс	-40	
Relative Humidity	RH	5	95	%

Table 3: Absolute Maximum Rating

RECOMMENDED OPERATING ENVIRONMENT

Recommended Operating Environment specifies parameters for which the electrical and optical characteristics hold unless otherwise noted.

Parameter	Symbol	Min.	Typical	Max	Unit
Power Supply Voltage	Vcc	3.135	3.300	3.465	V
Operating Case Temperature	Tc	0	25	70	°C

Table 4: Recommended Operating Environment

OPTICAL CHARACTERISTICS

The following optical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

	Unit	Values		
Operating Reach	Km	10		
Transmit				
Center wavelength (range)	nm	1260 -1355		
Side Mode Suppression Ratio (min)	dB	30		
Launched power				
– maximum	dBm	+0.5		
– minimum	dBm	-7.2 Notes1		
– OMA	dBm	-5.2		
- OMA-TDP (min)	dBm	-6.2		
Transmitter and dispersion penalty	dB	3.2 Notes4		
Average launch power of OFF transmitter (max)	dBm	-30		
Extinction ratio (min)	dB	3.5 Notes2		
RIN12 OMA (max)	dB/Hz	-128		
Optical Return Loss Tolerance (min)	dB	12		
Receiver				
Center wavelength (range)	nm	1260-1355		
Receive overload (max) in average power ¹	dBm	0.5		
Receive sensitivity (min) in average power ¹	dBm	-14.4 Notes3		
Vertical eye closure penalty (min) ³	dB	2.2		
Stressed eye jitter (min) ²	Ulp-p	0.7		
Receive electrical 3dB upper cutoff frequency (max)	GHz	12.3		
Receiver power (damage, Max)	dBm	1.5		

ELECTRICAL CHARACTERISTICS

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

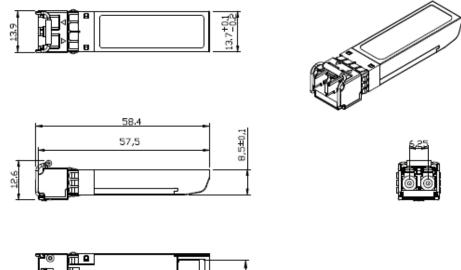
Parameter	Symbol	Min.	Typical	Max	Unit	Notes
Data Rate		-	10.3125	-	Gbps	
Power Consumption		-	1200	1500	mW	
		Transmit	ter			•
Single Ended Output Voltage Tolerance		-0.3	-	4.0	V	
C common mode voltage tolerance		15	-	-	m∨	
Tx Input Diff Voltage	VI	400		1600	m∨	
Tx Fault	VoL	-0.3		0.4	V	At 0.7mA
Data Dependent Input Jitter	DDJ			0.10	UI	
Data Input Total Jitter	TJ			0.28	UI	
		Receive	r			•
Single Ended Output Voltage Tolerance		-0.3	-	4.0	V	
Rx Output Diff Voltage	Vo	300		850	m∨	
Rx Output Rise and Fall Time	Tr/Tf	30			ps	20% to 80%
Total Jitter	TJ			0.70	UI	
Deterministic Jitter	DJ			0.42	UI	
-						

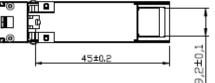
Table 6: Electrical Characteristics

CONRTOL AND STATUS I/O TIMING CHARACTERISTICS

Timing characteristics of control and status I/O are included in Table 7, which is also defined in SFF-8431.

Parameter	Symbol	Min	Max	Unit	Condition
TX Disable Assert Time	t_off		10	μs	Time from rising edge of TX Disable to when the optical output falls below 10% of nominal
TX Disable Negate Time	t_on		1	ms	Time from falling edge of TX Disable to when the modulated optical output rises above 90% of nominal
Time to initialize, including reset of TX_Fault	t_init		300	ms	From power on or negation of TX Fault using TX Disable
TX Fault Assert Time	t_fault		100	μs	Time from fault to TX fault on.
TX Disable to reset	t_reset	10		μs	Time TX Disable must be held high to reset TX_fault
LOS Assert Time	t_loss_on		100	μs	Time from LOS state to RX LOS assert
LOS Deassert Time	t_loss_off		100	μs	Time from non-LOS state to RX LOS deassert
Rate-Select Change Time	t_ratesel		10	μs	Time from rising or falling edge of Rate Select input until receiver bandwidth is in conformance with appropriate specification.
Serial ID Clock Rate	f_serial_clock	2	100	kHz	


Table 7: Timing Characteristics



MECHANICAL

Units in mm

ESD

This transceiver is specified as ESD threshold 1kV for high speed pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

LASER SAFTY

This is a Class 1 Laser Product according to IEC 60825-1:1993:+A1:1997+A2:2001. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (July 26, 2001)

ORDERING INFORMATION

AL-SFP10GSM-10

1310nm, Single mode 10Gbps, 10km SFP Transceiver

*Product specifications and availability are subject to change without notice.

